
1

ReadMe File for FAST v8.08.00c-bjj
Bonnie Jonkman, Jason Jonkman
National Renewable Energy Laboratory
June 30, 2014

Introduction
This document is designed to guide you through some of the changes that the FAST wind turbine
computer-aided engineering (CAE) tool is undergoing. FAST v8.08.00c-bjj is the second public release of
FAST under the new modularization framework developed at NREL. The architecture of FAST v8 is
entirely different from FAST v7.02.00d-bjj. These differences are highlighted in Figure 1.

The modules of FAST (AeroDyn, HydroDyn, etc.) correspond to different physical domains of the coupled
aero-hydro-servo-elastic solution, most of which are separated by spatial boundaries. Figure 2 shows
the control volumes associated with each module for fixed-bottom offshore wind turbines. For land-
based wind turbines, the HydroDyn hydrodynamics module would not be used and the SubDyn multi-
member substructure structural-dynamics module is optional. Figure 3 shows the control volumes
associated with each module for floating offshore wind turbines.

While FAST v8 has many features not found in FAST v7, several features of FAST v7.02.00d-bjj have not
yet been added to FAST v8, so we will continue to support both versions of the software (FAST v7 and
FAST v8) until FAST v8 is deemed a suitable replacement. Table 1 summarizes the different features
available in each version.

http://wind.nrel.gov/designcodes/simulators/developers/
http://wind.nrel.gov/designcodes/simulators/fast

2

Figure 1: Architectural comparison of FAST 7 and FAST 8

3

ServoDyn

ElastoDyn

SubDyn

Not Yet Available

HydroDyn

AeroDyn

External
Conditions

Applied
Loads

Wind Turbine

Hydro-
dynamics

Aero-
dynamics

Waves &
Currents

Wind-Inflow Power
Generation

Rotor
Dynamics

Substructure Dynamics

Foundation Dynamics

Drivetrain
Dynamics

Control System & Actuators

Nacelle Dynamics

Tower Dynamics

Soil-Struct.-
InteractionSoil

Figure 2: FAST control volumes for fixed-bottom systems (surface ice not shown)

ElastoDyn

ServoDyn

MAP or FEAMooring

HydroDyn

AeroDyn

External
Conditions

Applied
Loads

Wind Turbine

Hydro-
dynamics

Aero-
dynamics

Waves &
Currents

Wind-Inflow Power
Generation

Rotor
Dynamics

Platform Dynamics

Mooring Dynamics

Drivetrain
Dynamics

Control System & Actuators

Nacelle Dynamics

Tower Dynamics

Figure 3: FAST control volumes for floating systems

4

Table 1: Comparison of features between FAST v7 and v8

Aerodynamics (AeroDyn and InflowWind)
FAST Features v7.02 v8.08
• Quasi-steady or dynamic wake
• Steady or unsteady airfoil aerodynamics
• Tower shadow for downwind rotors
• Tower influence for upwind rotors
• Tower drag loading
• Tail-fin aerodynamic loading
• "Hub-height", TurbSim, and GH Bladed wind file formats
• Other wind formats
• Aeroacoustics (noise)
Hydrodynamics (HydroDyn, IceFloe, and IceDyn)
FAST Features v7.02 v8.08
• Linear regular or irregular waves
• White-noise waves
• Wave directional spreading
• Wave stretching
• Externally generated wave data
• Sea current
• Strip theory for central member
• Strip theory for multiple intersecting members
• Distributed static buoyancy
• Concentrated loads on member ends
• Support for inclined and tapered members
• Support for flooded and ballasted members
• Support for marine growth
• First-order potential flow (from WAMIT)
• Radiation "memory effect" captured through time-domain convolution
• Radiation "memory effect" captured through linear state-space form
• Quasi-steady and dynamic surface-ice loading

5

Control and Electrical System (Servo) Dynamics (ServoDyn)
FAST Features v7.02 v8.08
• Blade-pitch control
• Override pitch maneuvers
• Generator models
• Torque control
• High-speed shaft brake
• Nacelle-yaw control
• Override yaw maneuvers
• Blade-tip brakes
• GH Bladed DLL interface*
• Simulink interface
• LabVIEW interface
Structural Dynamics (ElastoDyn, SubDyn, MAP, and FEAMooring)
FAST Features v7.02 v8.08
• Blade-bending DOFs
• Rotor-teeter DOF
• Generator azimuth and drivetrain torsion DOFs
• Nacelle-yaw DOF
• Tower-bending DOFs
• Rigid-body platform DOFs
• Furling DOFs
• Fixed-bottom multi-member substructure DOFs:
• Gravitational loading
• Gearbox friction
• System of independent mooring lines solved quasi-statically
• System of multi-segmented mooring lines solved quasi-statically
• Mooring dynamics
• Earthquake excitation

* This option is a custom feature in FAST v7, requiring a separate executable. In FAST v8.08, it is part of the
standard distribution.

6

General
FAST Features v7.02 v8.03
• Time marching
• Operating-point determination
• Linearization
• FAST-to-ADAMS preprocessor
• Follows the new FAST modularization framework
• Structural and control routines separated from driver code
• Independent time steps between modules † ‡
• Independent spatial discretization between modules
• Multiple integration options
• Loose coupling with predictor-corrector across modules §
• Both 32-bit and 64-bit applications available **
• Supports both Windows and Linux operating systems
• Optimized for efficiency
• Supports mixed Fortran/C
• Compiles with gfortran ††

Major changes in FAST

v8.08.00c-bjj
• Coupling between ElastoDyn, SubDyn, and HydroDyn was added, allowing FAST to model

fixed-bottom offshore turbines, including multi-member substructures (e.g., tripods and
jackets).

• The module input-output solves have been enhanced; see the following paper for
theoretical details: http://www.nrel.gov/docs/fy14osti/60742.pdf.

• The mesh mapping algorithms have been enhanced; see the following paper for theoretical
details: http://www.nrel.gov/docs/fy14osti/60742.pdf.

• We now use LAPACK routines for solving linear systems, which has increased the speed of
the simulations.

• The glue code allows the option for time-step subcycling. Modules can now choose to use
smaller time steps than the glue code, as long as the module time step is an integer divisor
of the glue-code time step. Note that we have found no cases where this option would be
necessary.

• New modules for ice loading were added: IceFloe and IceDyn‡‡.

† These steps must be integer multiples of the structural time step.
‡ These steps must be integer divisors of the glue-code time step. Future versions will allow integer multiples of the
glue-code time step as well.
§ FAST v7 is limited to one correction step and this correction step only applies to some modules.
** The 64-bit version of FAST v8.08 does not contain the ability to use the MAP module.
†† The FAST v8.08 source code can be compiled using gfortran, however the offshore cases do not run with this
compiled executable. We are working to find the problem and fix it.

http://www.nrel.gov/docs/fy14osti/60742.pdf
http://www.nrel.gov/docs/fy14osti/60742.pdf

7

• Another module for mooring lines was added: FEAMooring‡‡.
• The names of output files generated by both FAST and its modules have been standardized,

see Figure 4. Files generated by FAST are named
 <RootName>.<ext>
and files generated by FAST modules are named
 <RootName>.<ModName>.<ext>
where <RootName> is the root name of the primary FAST input file (the file name, including
path, without the extension), <ModName> is an abbreviation for the module generating the
file, and <ext> is the file extension. File extensions currently are

• The “Time Ratio” displayed at the end of a simulation now includes only the CPU time after
initialization. This ratio was changed to help users better predict the amount of time longer
simulations will take (e.g., extrapolating the time a 1-hr simulation will take based on
running a 1-min simulation).

• Information about the Jacobian and time steps was added to the FAST summary file.
• Bugs in handling errors were fixed. (In FAST v8.03.02b-bjj, InflowWind did not return all of

its errors to the glue code, so it was using zero wind velocity when it went outside the
turbulence grid.)

• FAST no longer allows the tower influence model, “NEWTOWER,” to be used in AeroDyn on
floating offshore turbines. This tower influence model assumes the tower does not move,
which is a poor assumption for floating turbines.

• FAST will now abort if ElastoDyn’s TowerBsHt value is negative for floating offshore systems.
• We fixed a bug in ElastoDyn (which is also present in FAST v7.02.00d) where the linear

teeter-damper moment did not use TeetDmpP.
• We fixed a problem where the ElastoDyn Azimuth channel would be negative in rare cases.
• We fixed a problem with ElastoDyn’s implementation of AM4, which incorrectly initialized

the state history if corrections steps were taken.
• We no longer allow extrapolation orders of 0 in FAST v8.08.00c-bjj.
• We updated the DISCON*.DLL files used in the 5MW model certification tests. Previously,

they did not work if users did not have Intel Visual Fortran installed on the computers they
ran the simulations on.

• We fixed some bugs in the AeroDyn input files of the NREL 5-MW land-based turbine.
• We set the time steps of the floating offshore certification tests to be the same as they were

in FAST v7.02.00d

‡‡ IceDyn and FEAMooring have been added to FAST v8.08.00c-bjj, but they are not complete and have not been
tested well.

Output file extension File type
sum Summary file
out Time-marching tabular text output

outb Time-marching tabular binary output
ech Echo of input file (primarily for debugging)

8

• We added certification tests for the OC3 Monopile, OC3 Tripod, OC4 Jacket, and OC4-
DeepCwind Semi-Submersible models.

• We have added some more utility files to the FAST archive, including:
o PlotFASToutput.m, a MATLAB function that can plot some or all channels of one or more

FAST time-series output files.
o ReadSubDynSummary.m, a MATLAB function that can read the SubDyn summary file

and put the data into a Matlab data-structure.
• We have updated the MAP_win32.dll file distributed with FAST so that it no longer depends

on python being installed on the computer running FAST.
• We have added a 64-bit FAST executable to the archive, as well as a 64-bit version of

DISCON_win64.DLL, and a “dummy” 64-bit version of MAP. This executable may be useful
for running long simulations of large fixed-bottom offshore models (e.g., the OC4 Jacket); it
cannot run any models that want to call the MAP module.

FAST v8.08.00c-bjj is compiled with the components listed in Table 2.

Table 2: Components in FAST v8.08.00c-bjj

Component Version
Modules ModName (for output files)
ElastoDyn v1.01.06b-bjj ED
AeroDyn v14.02.01c-bjj AD
InflowWind v2.00.01b-bjj IfW
ServoDyn v1.01.02a-bjj SrvD
HydroDyn v2.01.01c-gjh HD
SubDyn v1.01.00a-rrd SD
MAP v0.97.01a-mdm MAP
FEAMooring v1.00.00-yhb FEAM
IceFloe v1.00.00 IceF
IceDyn v1.00.01-by IceD
Other Components
NWTC Subroutine Library v2.03.03b-bjj
FAST Registry§§ v2.03.01
Third Party Content
LAPACK v3.3 as part of Intel® Math Kernel Library;

(v3.5.0 compiled with gfortran)
ScaLAPACK 2.0.2
FFTPACK v4.1

§§ The FAST Registry reads input files from each module to auto-generate the *_Types.f90 files required for the
FAST framework.

9

Figure 4: Summary of Input and Output Files for FAST v8.08.00c-bjj

10

v8.03.02b-bjj
Tasks completed to develop FAST v8 included:

• Converted FAST and its various modules (including AeroDyn and HydroDyn) into the new
modularization framework (splitting out the controls and electrical-drive dynamics into a
new ServoDyn module and structural dynamics into a new ElastoDyn module),

• Implemented a new driver program (glue code) supporting loose coupling of the modules,
• Developed mesh-to-mesh mapping schemes between module-independent discretizations

of the spatial boundaries between modules,
• Coupled in the recently developed SubDyn module for multi-member substructure

structural dynamics and MAP module for multi-segmented mooring quasi-statics, and
• Included a series of models using the NREL 5-MW Baseline wind turbine in the CertTest,

including offshore configurations.

The driver program (glue code) couples the modules together; it controls the overall simulation progress
and maps module outputs to inputs. We use the name “FAST” both for the driver program (glue code)
and overall coupled code.

FAST and each of its modules, except InflowWind, have their own input files; see Figure 4.

Certification Tests
Several new models have been added to the FAST v8.08.00c-bjj archive. Table 3 lists the tests (1-25) and
models available in the FAST CertTest folder:

Table 3: Certification Tests Distributed with FAST v8.08.00c-bjj

Test
Name

Turbine Name

No.
Blades

(-)

Rotor
Diameter

(m)

Rated
Power
(kW)

Test Description

Test01 AWT-27CR2 2 27 175 Flexible, fixed yaw error, steady wind
Test02 AWT-27CR2 2 27 175 Flexible, steady wind
Test03 AWT-27CR2 2 27 175 Flexible, free yaw, steady wind
Test04 AWT-27CR2 2 27 175 Flexible, free yaw, turbulence
Test05 AWT-27CR2 2 27 175 Flexible, steady wind
Test06 AOC-15/50 3 15 50 Flexible, steady wind
Test07 AOC-15/50 3 15 50 Flexible, free yaw, turbulence
Test08 AOC-15/50 3 15 50 Flexible, fixed yaw error, steady wind
Test09 UAE VI downwind 2 10 20 Flexible, yaw ramp, steady wind
Test10 UAE VI upwind 2 10 20 Rigid, power curve, ramp wind
Test11 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, pitch

failure, turbulence
Test12 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, ECD

event
Test13 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control,

turbulence
Test14 Not currently available
Test15 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, EOG01

event
Test16 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, EDC01

http://wind.nrel.gov/designcodes/simulators/developers/
http://wind.nrel.gov/designcodes/simulators/developers/

11

Test
Name

Turbine Name

No.
Blades

(-)

Rotor
Diameter

(m)

Rated
Power
(kW)

Test Description

event
Test17 SWRT 3 5.8 10 Flexible, variable speed control, free yaw,

turbulence
Test18 NREL 5 MW - Land-based 3 126 5000 Flexible, DLL control, tower potential flow and

drag, turbulence
Test19 NREL 5 MW - OC3-Monopile 3 126 5000 Flexible, DLL control, tower potential flow,

turbulence, irregular waves
Test20 NREL 5 MW - OC3-Tripod 3 126 5000 Flexible, DLL control, tower potential flow,

steady wind, regular waves with 0 phase
Test21 NREL 5 MW - OC4-Jacket 3 126 5000 Flexible, DLL control, tower potential flow,

turbulence, irregular waves, marine growth
Test22 NREL 5 MW - ITI Barge 3 126 5000 Flexible, DLL control, irregular & multidirectional

waves, turbulence
Test23 NREL 5 MW - MIT/NREL TLP 3 126 5000 Flexible, DLL control, turbulence, irregular waves
Test24 NREL 5 MW - OC3-Hywind 3 126 5000 Flexible, DLL control, turbulence, irregular waves
Test25 NREL 5 MW - OC4-

DeepCwind Semi-
Submersible

3 126 5000 Shortened OC4 Load Case (LC) 3.7: steady wind,
white noise waves

Variables Specified in the FAST Primary Input File
FAST expects to find variables on specific lines in the text input file, so, do not add or remove lines in the
file. The inputs listed in the file are described below, and an example file is provided at the end of this
document, in Appendix: Example FAST v8.08.* Input File.

Simulation Control
This section of the input file contains options for controlling the simulation.

Echo: Echo input data to <RootName>.ech [T/F]
Setting this flag to “True” will result in the FAST primary input file being echoed to a file named
“<RootName>.ech” where <RootName> is the name of the FAST primary input file, excluding its file
extension. This feature is useful for debugging an input file.

AbortLevel: Error level when simulation should abort [“WARNING”, “SEVERE”, or “FATAL”]
This string tells FAST what error level should cause an abort. Typically we set this to abort on fatal errors,
but there may be instances when a user wishes to abort on severe errors or warnings.

Fatal errors are those from which the program cannot recover. For example:

• Running out of memory when trying to allocate space for variables.
• Trying to read a number from a line of an input file that does not contain numeric values.
• Reaching the end of an input file before reading all the necessary information.
• Trying to open a file for writing, but the file is locked from another process.

Some examples of severe errors include the following:

12

• A format specifier for real numbers is too narrow to print “–1.0”, so output files will almost
certainly contain “***” instead of actual numbers.

• When trying to read a numeric value, logical “True” or “False” values were found instead.
Fortran interprets them as 0 or 1, but that may not be what the user intended.

• A routine is using math based on the assumption that the angles are small, but the angles it
found were larger than what it considers “small.”

Warnings are typically generated when the simulation can continue—perhaps by the program adjusting
inputs—but the results may not be what the user expected. Things that may generate warnings include

• Cases when user inputs are modified:
o If the user asked for output on more tower strain gages than there are tower nodes,

ElastoDyn will set the number of strain gages equal to the number of nodes.
o If air density is set to zero, AeroDyn will turn off the dynamic-inflow model.

• Cases where non-physical conditions could be modeled:
o If the user enables ElastoDyn’s second flap mode but does not enable the first flap

mode.
o If the user has disabled wake calculations in AeroDyn.

TMax: Total run time [s]
This is the total length of the simulation to be run, in seconds. The first output is calculated at t = 0; the
last output is calculated at t = TMax seconds.

DT: Recommended module time step [s]
This is the global, or glue-code, time step, DT is the value FAST will suggest modules use, although some
modules may choose to use a time step that is an integer multiple smaller than DT. Module input-output
relationships used to couple the modules together are calculated every DT seconds. It is essential that a
small enough time step is used to ensure solution accuracy (by providing a sufficient sampling rate to
characterize all key frequencies of the system), to ensure numerical stability of the selected time-
integrators, and to ensure that the coupling between modules of FAST is numerically stable.

Our rule of thumb is to set DT = 1 / (10 * highest natural frequency in Hz in the coupled model). This
natural frequency is hard to estimate before the full-system linearization of the coupled FAST model is
realized. For coupled FAST models that don’t use SubDyn, the frequency can be estimated via a
linearization analysis of FAST v7. For coupled FAST models that do use SubDyn, guidance for choosing
the time step is found in the SubDyn ReadMe file.

InterpOrder: Interpolation/Extrapolation order for input/output time history [1 or 2]
This is the order of the interpolation or extrapolation used for module inputs in the FAST glue code.
Valid entries are “1” for linear interpolation/extrapolation or “2” for quadratic
interpolation/extrapolation. Previous module inputs are extrapolated at the beginning of each step in
the time-advancement loop to provide a guess for the actual module inputs at that step. Module inputs
are typically interpolated in a module’s UpdateStates routine.

13

We have found that quadratic extrapolation typically works well. However, there are times when linear
extrapolation provides a stable solution while quadratic does not. We have found this to be true for
cases where the model has poor initial values or cases where the simulation may have errors building
up.

NumCrctn: Number of correction iterations [-]
This is the number of corrections to be taken on each step of the predictor-corrector scheme
implemented in FAST. The value of NumCrctn must not be negative. Most models can achieve stable
solutions by using explicit calculations (i.e., no corrections: NumCrctn = 0), particularly if using
InterpOrder = 2 and the recommended DT—see above. However, corrections may be needed if you
wish to achieve a given convergence rate of an underlying time integrator (e.g., if you are using a 4th-
order accurate integration scheme, you may only get a 2nd-order accurate solution with no corrections.
If you desire a 4th-order accurate solution, you may need one or more corrections).

DT_UJac: Time between calls to get Jacobians [s]
We use a Jacobian matrix to solve the module input-output relationship between accelerations and
loads in the ElastoDyn-HydroDyn-SubDyn coupling. This Jacobian is computed with finite differences and
can be time consuming. However, it rarely needs to be calculated frequently.

DT_UJac determines how often the Jacobian needs to be updated. If the platform reference point in
ElastoDyn doesn't rotate much, DT_UJac can be set to a value larger than TMax. DT_UJac is not
currently used for land-based systems. For floating systems, where the platform may rotate more than
several degrees in roll, pitch, and/or yaw, it is recommend to set DT_UJac = 1/(10*natural frequency in
Hz of the roll, pitch, or yaw mode with excessive motion).

UJacSclFact: Scaling factor used in Jacobians [-]
This factor is used to divide the magnitude of the load terms in the Jacobian (see DT_UJac) so that they
are approximately the same order of magnitude as the acceleration terms. For the NREL 5-MW turbine
models in the Certification Test, we’ve set it to 1E+06 and have not found any cases where that value did
not work. UJacSclFact may need to be set larger or smaller when modeling wind turbines much larger or
smaller turbines than the NREL 5-MW baseline.

Feature Switches and Flags
This section of the input file contains switches and flags that tell FAST which modules should be used in
the simulation.

CompElast: Compute structural dynamics [1 or 2]
1: Use ElastoDyn for the structural dynamics of the rotor, drivetrain, nacelle, and tower
2: Use BeamDyn for the structural dynamics on the blades and ElastoDyn for the drivetrain, nacelle, and
tower. CompElast = 2 is currently disabled; it will be implemented when BeamDyn is integrated into
FAST.

Please note that ElastoDyn must always be used when running FAST.

14

CompAero: Compute aerodynamic loads [0 or 1]
0: Do not calculate aerodynamic loads
1: Use AeroDyn for aerodynamic loads

CompServo: Compute control and electrical-drive dynamics [0 or 1]
0: Do not calculate control and electrical-drive dynamics
1: Use ServoDyn for control and electrical-drive dynamics

CompHydro: Compute hydrodynamic loads [0 or 1]
0: Do not calculate hydrodynamic loads
1: Use HydroDyn for hydrodynamic loads

If CompHydro is not zero, FAST considers the model to be an offshore system. If CompSub is also non-
zero, the offshore system is a fixed-bottom system. If CompSub is zero, the offshore system is
considered a floating system.

CompSub: Compute sub-structural dynamics [0 or 1]
0: Do not calculate sub-structural dynamics
1: Use SubDyn for sub-structural dynamics

CompMooring: Compute mooring system [0, 1, or 2]
0: Do not model a mooring system
1: Use MAP to model a mooring system
2: Use FEAMooring to model a mooring system

Note that FEAMooring is not complete (not fully functional) in FAST v8.08.00c-bjj.

CompIce: Compute ice loads [0, 1, or 2]
0: Do not model offshore surface ice
1: Use IceFloe to model offshore surface ice
2: Use IceDyn to model offshore surface ice

Note that IceDyn is not complete (not fully functional) in FAST v8.08.00c-bjj.

CompUserPtfmLd: Compute additional platform loading [T/F]
This feature is currently disabled.

CompUserTwrLd: Compute additional tower loading [T/F]
This feature is currently disabled.

Input Files
The input files specified in this section can be specified relative to the location of the FAST primary input
file or specified with an absolute path. We recommend that you use quotes around the path/file names.

EDFile: Name of file containing ElastoDyn input parameters [-]
This is the name of the ElastoDyn primary input file.

15

BDBldFile(1): Name of file containing BeamDyn input parameters for blade 1 [-]
This feature is currently disabled.

BDBldFile(2): Name of file containing BeamDyn input parameters for blade 2 [-]
This feature is currently disabled.

BDBldFile(3): Name of file containing BeamDyn input parameters for blade 3 [-]
This feature is currently disabled.

AeroFile: Name of file containing aerodynamic input parameters [-]
This is the name of the AeroDyn primary input file. At this time, AeroFile must be specified even if
CompAero = 0 because ElastoDyn currently reads the AeroDyn input file for its blade discretization. We
plan to fix this to use the mesh-mapping required in the FAST framework in a future release.

ServoFile: Name of file containing control and electrical-drive input parameters [-]
This is the name of the ServoDyn primary input file. It is not used if CompServo = 0.

HydroFile: Name of file containing hydrodynamic input parameters [-]
This is the name of the HydroDyn primary input file. It is not used if CompHydro = 0.

SubFile: Name of file containing sub-structural input parameters [-]
This is the name of the SubDyn primary input file. It is not used if CompSub = 0.

MooringFile: Name of file containing mooring system input parameters [-]
This is the name of the MAP (CompMooring = 1) or FEAMooring (CompMooring = 2) primary input file.
It is not used if CompMooring = 0.

IceFile: Name of file containing ice input parameters [-]
This is the name of the IceFloe (CompIce = 1) or IceDyn (CompIce = 2) primary input file. It is not used if
CompIce = 0.

Output
This section deals with what can be output from a FAST simulation.

SumPrint: Print summary data to “<RootName>.sum” [T/F]
When set to “true”, FAST will generate a file named “<RootName>.sum”. This summary file contains the
version number of all modules being used, the time steps for each module, and information about the
channels being written to the time-marching output file(s). If SumPrint is “false”, no summary file will be
generated.

SttsTime: Amount of time between screen status messages [s]
During a FAST simulation, the program prints a message like this:

SttsTime sets how frequently this message is updated. For example, if SttsTime is 2 seconds, you will see
this message updated every 2 seconds of simulation time.

16

DT_Out: Time step for tabular output [s]
This is the time step of the data in the tabular (time-marching) output files. DT_Out must be an integer
multiple of DT.

TStart: Time to begin tabular output [s]
This is time step that must be reached before FAST will begin writing data in the tabular (time-marching)
output files. Note that the output files may not actually start at TStart seconds if TStart is not an integer
multiple of DT_Out.

OutFileFmt: Format for tabular output [1, 2, or 3]
This indicates which type of tabular (time-marching) output files will be generated. If OutFileFmt is 1,
only a text file will be written. If OutFileFmt is 2, only a binary file will be written. If OutFileFmt is 3, both
text and binary files will be written.

Text files write a line to the file each time step. This can make the simulation run slower, but it can be
useful for debugging, particularly if a simulation doesn’t run to completion or if you want to look at
some results before the entire simulation finishes.

Binary files write the entire file at the end of the simulation. If a lot of output channels are requested for
a long simulation, this can take up a moderate amount of memory. However, they tend to run faster and
the resulting files take up much less space. The binary files contain more precise output data than text
files, which are limited by the chosen output format specifier—see OutFmt below.

We recommend you use text files for debugging and binary files for production work. A MATLAB script
for reading FAST binary output files is included in the archive (see
Utilities\SimulationToolbox\Utilities\ReadFASTbinary.m). The NREL post-processors Crunch and
MCrunch can also read these binary files.

TabDelim: Use tab delimiters in text tabular output file? [T/F]
When OutFileFmt = 1 or 3, setting TabDelim to “True” will put tabs between columns in the text tabular
output file. Otherwise, spaces will separate columns in the text tabular output file. If OutFileFmt = 2,
TabDelim has no effect.

OutFmt: Format used for text tabular output, excluding the time channel [-]
When OutFileFmt = 1 or 3, FAST will use OutFmt to format the channels printed in the text tabular
output file. OutFmt should result in a field that is 10 characters long (channel headers are 10 characters
long, and NWTC post-processing software sometimes assume 10 characters). The time channel is
printed using the “F10.4” format. We commonly specify OutFmt to be “ES10.3E2”.

If OutFileFmt = 2, OutFmt has no effect.

17

Modeling Tips
If a model is numerically unstable, you can try these steps

• Add a correction step (NumCrctn).
• Make DT smaller.
• Change InterpOrder.
• Set better initial conditions in the module input files (particularly ElastoDyn).

Limitations
Table 1 shows a comparison of features between FAST v7 and FAST v8.08.00c-bjj. It is our intent to
include all of the features of FAST v7 in the new modular framework of FAST v8 in the future. Until then,
NREL plans to support both versions of FAST. Other limitations of FAST v8 include:

• FAST v8.08.00c-bjj is distributed as both a 32-bit and 64-bit Windows application. However, the
64-bit application cannot run the MAP module. We are working to update the MAP DLL so that
it does not depend on third-party libraries that are not supported in 64-bit Windows
applications.

• FAST v8.08. 00c-bjj runs a bit slower than FAST v7.02.00d-bjj (though the offshore cases run
significantly faster than FAST v8.03.02b-bjj). We have put our effort into getting the framework
to work and will address computational efficiency later. We expect great improvements in
efficiency as development continues.

• The OC4 Jacket model requires approximately 2 GB of memory and may not run on 32-bit
Windows® systems. (The model does run using FAST_Win32.exe on a 64-bit Windows® system.)

• The IceDyn and FEAMooring modules are not complete in FAST v8.08.00c-bjj.

Future Work
All future developments of FAST will follow the framework.

• Address items from the “Limitations” section
• Introduce the new BeamDyn module for nonlinear finite-element modeling of blade structural

dynamics
• Upgrade the loose-coupling algorithm of the glue code to allow each module to have its own

time step, including time steps larger than the glue-code time step.
• Upgrade ElastoDyn and AeroDyn to have distinct discretization schemes for the blades and

tower (currently ElastoDyn uses AeroDyn’s blade discretization and AeroDyn uses ElastoDyn’s
tower discretization)

• Optimize the code, particularly ElastoDyn, so that it runs faster
• Introduce tight coupling

18

• Introduce operating-point determination and linearization across the coupled aero-hydro-servo-
elastic solution

• And much, much, more…

Converting to FAST v8.08.x
We have created template input files for FAST v8.08.x, ElastoDyn v1.01.x, ServoDyn v1.01.x, and
HydroDyn v2.01.x. These template files can be found in the Matlab Simulation Toolbox that is now
included in the FAST archive: Utilities\SimulationToolbox\ConvertFASTVersions\TemplateFiles.

See the “Matlab Conversion Scripts” section below for help in automatically converting input files to the
latest version.

Also note that you can find example up-to-date input files in the FAST v8.08.00c-bjj archive’s CertTest
folder. See the “Certification Tests” section of this document for descriptions.

Summary of Changes to Inputs
This section summarizes changes to the FAST primary input file between major releases.

Changes in FAST v8.08.00c-bjj
The following list describes the differences in the primary input file of FAST v8.08.00c-bjj relative to FAST
v8.03.02b-bjj.

• Many variables in the primary FAST input file have been renamed:

FAST v8.03.x Name FAST v8.08.x Name
ADFile AeroFile

SrvDFile ServoFile
HDFile HydroFile
SDFile SubFile

MAPFile MooringFile
CompMAP CompMooring

• Most of the feature flags were changed to feature switches in the primary FAST input file.
Instead of True/False inputs, CompAero, CompServo, CompHydro, CompSub, and CompMooring
now require integer inputs.

• Inputs for coupling with modules IceFloe and IceDyn have been added: CompIce and IceFile.
• Several new inputs for future coupling of BeamDyn into FAST have been added. These inputs are

CompElast, BDBldFile(1), BDBldFile(2), and BDBldFile(3).
• The modules ElastoDyn, ServoDyn, AeroDyn, HydroDyn, and SubDyn allow users to input the

string “Default” for their respective time steps, which will then use the time step from the FAST
primary input file.

Changes in FAST v8.03.02b-bjj
The following list describes the differences in the FAST, ElastoDyn, and ServoDyn input files of FAST
v8.03.02b-bjj relative to the input files of FAST v7.02.00d-bjj.

19

• The primary FAST input file has been converted to primary input files for FAST, ElastoDyn, and
ServoDyn and some of the inputs have been reordered.

• The FAST Platform file has been eliminated, with some of the inputs now part of the ElastoDyn
primary input file and some of the inputs now part of HydroDyn’s and MAP’s input files.

• All of the inputs formerly labeled “[CURRENTLY IGNORED]” have been removed.
• Switches for ADAMS preprocessing and linearization have been removed.
• Noise has been removed.
• PtfmLdMod has been converted to CompUsrPtfmLd.
• TwrLdMod has been converted to CompUserTwrLd.
• The tip-brake inputs have been removed.
• PtfmCM is now PtfmCMzt, with PtfmCMzt = -PtfmCM.
• Corresponding inputs PtfmCMxt and PtfmCMyt have been added.
• PtfmRef is now PtfmRefzt, with PtfmRefzt = -PtfmRef.
• TwrRBHt and TwrDraft have been replaced with TowerBsHt, with

TowerBsHt = TwrRBHt – TwrDraft.
• The output decimation factor (DecFact) has been converted to DT_out (DT_out = DT*DecFact).
• The yaw and pitch maneuvers no longer specify end times for the maneuvers. Instead they

specify a rate for the maneuver.
• The GBRevers variable has been removed; input GBRatio must now be specified as a negative

number if GBRevers was previously set to True.
• ElastoDyn’s blade input properties table no longer specifies AeroCent. Instead, it specifies the

location of the pitch axis, PitchAxis, which is calculated as PitchAxis = 0.5 – AeroCent by the
MATLAB conversion script; the aerodynamic center will become part of AeroDyn in a future
release.

• The OutList variables have been divided among the various FAST modules, and several outputs
are no longer valid.

• The GH Bladed Interface is now a standard option in ServoDyn, without requiring a recompile.
• Tower drag loading has been added to AeroDyn v14.02.00c-mlb with a new corresponding flag

in the AeroDyn input file.
• The glue code allows options for AbortErrLevel, number of corrections in the predictor-

corrector algorithm, and extrapolation/interpolation order of module inputs to be used for time
advancement.

• For the ElastoDyn coupling to HydroDyn or SubDyn, FAST also has two inputs controlling the
implicit solve (via Jacobian computed with finite differences)—see DT_UJac and UJacSclFact
described in the Variables Specified in the FAST Primary Input File Section above.

Matlab Conversion Scripts
Because the changes to the input files are significant, we have created Matlab scripts to automatically
convert FAST v7.x or FAST 8.03.02b-bjj input files to FAST v8.08.00c-bjj. The files you will need are
included in the Simulation Toolbox, located in this directory of the FAST archive:
Utilities\SimulationToolbox\ConvertFASTVersions.

20

We recommend that you add the Simulation Toolbox to your Matlab path so that you can access all of
the routines defined in it. For example:

FASTSimulationToolbox = 'C:\Users\bjonkman\FAST\UtilityCodes\SimulationToolbox';
addpath(genpath(FASTSimulationToolbox));

An example showing how we converted the NREL CertTest input files for use with FAST v8.08.00c-bjj is
included in the FAST archive: CertTest\ConvertFiles.m. You can use this script as a basis for helping to
convert your own input files; however, we strongly recommend that you make copies of all your input
files before running any scripts to convert them. Fortran and MATLAB read text input files in slightly
different ways; so some things that may work in Fortran may not be read in the same way in MATLAB.
We recommend that you carefully check the files after converting them.

Converting from FAST v8.03.02b-bjj
If you have FAST v8.03.x input files that you wish to convert to FAST v8.08.00c-bjj, you can use the
Matlab function, ConvertFAST8_3to8. This function will convert the primary FAST input file and the
primary HydroDyn input file from FAST v8.03.x to FAST v8.08.x. You will need to provide the name of the
FAST v8.03.x primary input file and the name of the directory where the new input files should be
placed:

ConvertFAST8_3to8(inputfile, newDir);

Note that we do not automatically convert the SubDyn input files from FAST v8.03. These you must do
by hand—or use the models provided in the FAST Certification Tests.

Converting from FAST v7
To convert FAST v7 input files to FAST v8.08.00c-bjj, you can use the MATLAB function
ConvertFAST7to8. This function will create a new primary input files for FAST, ServoDyn, and ElastoDyn.
It also creates new blade and tower files for ElastoDyn. It does not automatically convert hydrodynamic-
and mooring system-related inputs. This function does not create HydroDyn, SubDyn, MAP, or
AeroDyn*** input files.

You will need to provide the ConvertFAST7to8 function with the name of the FAST v7.x primary input
file and the directory where the new input files should be placed. The new directory should not be the
directory where the old files are located!

ConvertFAST7to8(inputfile,newDir);

*** If you use the “NEWTOWER” model in AeroDyn, you will have to add one additional line (the AeroDyn input file
for Test18 in the CertTest folder contains this line); if you do not use the “NEWTOWER” model, the AeroDyn input
file has not changed.

21

If your input file has pitch or yaw maneuvers, you may also provide the routine with the new rates
(instead of the end times previously used). We have also provided a Matlab routine
(CalculateYawAndPitchRates) that will calculate these rates, but you must provide the routine the name
of the FAST output file that contains the previous results of the Pitch and/or Yaw channels.

[YawManRat, PitManRat] = CalculateYawAndPitchRates('Test09.fst', 'Test09.out');
ConvertFAST7to8(inputfile, newDir, YawManRat, PitManRat);

If YawManRat or PitManRat are zero, those inputs are ignored and values from the ServoDyn template
file will be used instead.

If your input file was used with the custom interface to GH Bladed DLL controllers, you should also set
the optional input parameter, usedBladedDLL, so that your input switches that previously called the DLL
are now set to 5, the new switch for User-Defined Control from Bladed DLL.

ConvertFAST7to8(oldFSTName, newDir, YawManRat, PitManRat, usedBladedDLL)

Compiling
If you want to compile the code, please read the file, “CompilingInstructions_FASTv8.pdf” located in the
“Compiling” folder in the FAST archive for details.

Unlike FAST v7 distributions, all of the source code you need to compile the project is contained in the
archive’s Source directory. The text files (.txt) in the source folders are input files for the FAST Registry.
These files are used to generate the *_Types.f90 files for the component modules.

The compiling folder contains:

• A Microsoft Visual Studio project with all of the FAST source files and settings needed to compile
in Release or Debug mode. This project places executables called “FAST_dev_Win32.exe” and
“FAST_dev_debug_Win32.exe” in the FAST\bin folder. (renamed with “_dev” to prevent
overwriting the executables created by NREL and distributed with FAST).

• A Windows® batch script that can be run from your Intel Fortran Command Prompt Window,
with very little (if any) modification. This batch file creates executables named
“FAST_iwin32.exe” and “FAST_iwin64.exe” in the local (i.e., FAST\Compiling) folder.

• A makefile for gfortran with (most of) the settings to create “FAST_gwin32.exe” and
“FAST_gwin64.exe” in the local (i.e., FAST\Compiling) folder. To run this on Windows, you will
need to install binaries of the LAPACK libraries. Please see “CompilingInstructions_FASTv8.pdf”
for details. This makefile has been tested only on Windows. Also note that offshore models do
not run with the gfortran executables (land-based models do).

All of these tools for compiling are set up to compile and link with the appropriate settings, though you
may have to modify the makefile to find the LAPACK libraries. (Note that FAST uses several specialized
compiling/linking options and that MAP is distributed as a dynamic-link library.) These tools also run the
FAST Registry if necessary (e.g., changes to the Registry input files or missing *_Types.f90 files).

22

The Visual Studio project and Windows batch script were created using

Microsoft Visual Studio 2010 Shell
Intel® Visual Fortran Composer XE 2011, version 12.1.3.300
Intel Math Kernel Library (MKL) 10.3 Update 9

The MKL is used only for LAPACK routines.

Running FAST v8.08.00c-bjj
FAST v8.08.00c-bjj must load the MAP library when the program starts. FAST_Win32.exe needs to load
MAP_Win32.dll and FAST_x64.exe needs to load MAP_x64.dll. These dynamic link libraries (DLLs) must
be on your Windows® path. The easiest way to do this is to make sure that the MAP DLLs are in the
same directory as the FAST executables. We distribute the executables and DLLs in the \bin directory of
the FAST archive, so this is already done for you. However, if you choose to move the files or if you
compile using the Windows® batch script or the makefile for gfortran, you may have to modify your path
environment variable or move some files.

To run FAST from a Windows command prompt, the syntax is:

<name of FAST executable with or without extension> <name of input file with extension>

To start, it easiest to open up your command window in the directory in which your FAST primary input
file and FAST executable are stored. For example, if you have an input file named “Input.fst”, along with
“FAST_Win32.exe”, stored in “C:\FileLocation”, you should type:

C:\>cd FileLocation
C:\FileLocation> FAST_Win32 Input.fst

The syntax is the same for different input files. Simply change “Input.fst” to whatever input file you
want.

An installation guide is available that describes how to install FAST (and the other CAE tools) in such a
way that they will run from a command window from any folder (without moving or copying the
executable around to different folders). See: http://wind.nrel.gov/designcodes/papers/setup.pdf.

Feedback
If you have questions or wish to provide feedback, please use our forums:
https://wind.nrel.gov/forum/wind/

http://wind.nrel.gov/designcodes/papers/setup.pdf
https://wind.nrel.gov/forum/wind/

23

Appendix: Example FAST v8.08.* Input File

Figure 5: Example FAST v8.08.00c-bjj Input File

------- FAST v8.08.* INPUT FILE --
NREL 5.0 MW Baseline Wind Turbine with OC4 Jacket Configuration, for use in offshore analysis
---------------------- SIMULATION CONTROL --------------------------------------
False Echo - Echo input data to <RootName>.ech (flag)
"FATAL" AbortLevel - Error level when simulation should abort (string) {"WARNING", "SEVERE", "FATAL"}
 60 TMax - Total run time (s)
 0.01 DT - Recommended module time step (s)
 2 InterpOrder - Interpolation order for input/output time history (-) {1=linear, 2=quadratic}
 1 NumCrctn - Number of correction iterations (-) {0=explicit calculation, i.e., no corrections}
 99999 DT_UJac - Time between calls to get Jacobians (s)
 1E+06 UJacSclFact - Scaling factor used in Jacobians (-)
---------------------- FEATURE SWITCHES AND FLAGS ------------------------------
 1 CompElast - Compute structural dynamics (switch) {1=ElastoDyn; 2=ElastoDyn+BeamDyn blades}
 1 CompAero - Compute aerodynamic loads (switch) {0=None; 1=AeroDyn}
 1 CompServo - Compute control and electrical-drive dynamics (switch) {0=None; 1=ServoDyn}
 1 CompHydro - Compute hydrodynamic loads (switch) {0=None; 1=HydroDyn}
 1 CompSub - Compute sub-structural dynamics (switch) {0=None; 1=SubDyn}
 0 CompMooring - Compute mooring system (switch) {0=None; 1=MAP; 2=FEAMooring}
 0 CompIce - Compute ice loads (switch) {0=None; 1=IceFloe; 2=IceDyn}
False CompUserPtfmLd - Compute additional platform loading (flag) {false: none; true: user-defined}
False CompUserTwrLd - Compute additional tower loading (flag) {false: none; true: user-defined}
---------------------- INPUT FILES ---
"OC4Jacket_ElastoDyn.dat" EDFile - Name of file containing ElastoDyn input parameters (quoted string)
"unused" BDBldFile(1) - Name of file containing BeamDyn blade 1 inputs (quoted string)
"unused" BDBldFile(2) - Name of file containing BeamDyn blade 2 inputs (quoted string)
"unused" BDBldFile(3) - Name of file containing BeamDyn blade 3 inputs (quoted string)
"OC4Jacket_AeroDyn.dat" AeroFile - Name of file containing aerodynamic input parameters (quoted string)
"OC4Jacket_ServoDyn.dat" ServoFile - Name of file with control/electric-drive inputs (quoted string)
"OC4Jacket_HydroDyn.dat" HydroFile - Name of file containing hydrodynamic inputs (quoted string)
"OC4Jacket_SubDyn.dat" SubFile - Name of file containing sub-structural inputs (quoted string)
"unused" MooringFile - Name of file containing mooring system inputs (quoted string)
"unused" IceFile - Name of file containing ice input parameters (quoted string)
---------------------- OUTPUT --
True SumPrint - Print summary data to "<RootName>.sum" (flag)
 1 SttsTime - Amount of time between screen status messages (s)
 0.05 DT_Out - Time step for tabular output (s)
 0 TStart - Time to begin tabular output (s)
 2 OutFileFmt - Format for tabular (time-marching) output file (switch) {1:out, 2:outb, 3:both}
True TabDelim - Use tab delimiters in text tabular output file? (flag)
"ES10.3E2" OutFmt - Format used for text tabular output, excluding the time channel. (quoted string)

	Introduction
	Major changes in FAST
	v8.08.00c-bjj
	v8.03.02b-bjj

	Certification Tests
	Variables Specified in the FAST Primary Input File
	Simulation Control
	Echo: Echo input data to <RootName>.ech [T/F]
	AbortLevel: Error level when simulation should abort [“WARNING”, “SEVERE”, or “FATAL”]
	TMax: Total run time [s]
	DT: Recommended module time step [s]
	InterpOrder: Interpolation/Extrapolation order for input/output time history [1 or 2]
	NumCrctn: Number of correction iterations [-]
	DT_UJac: Time between calls to get Jacobians [s]
	UJacSclFact: Scaling factor used in Jacobians [-]

	Feature Switches and Flags
	CompElast: Compute structural dynamics [1 or 2]
	CompAero: Compute aerodynamic loads [0 or 1]
	CompServo: Compute control and electrical-drive dynamics [0 or 1]
	CompHydro: Compute hydrodynamic loads [0 or 1]
	CompSub: Compute sub-structural dynamics [0 or 1]
	CompMooring: Compute mooring system [0, 1, or 2]
	CompIce: Compute ice loads [0, 1, or 2]
	CompUserPtfmLd: Compute additional platform loading [T/F]
	CompUserTwrLd: Compute additional tower loading [T/F]

	Input Files
	EDFile: Name of file containing ElastoDyn input parameters [-]
	BDBldFile(1): Name of file containing BeamDyn input parameters for blade 1 [-]
	BDBldFile(2): Name of file containing BeamDyn input parameters for blade 2 [-]
	BDBldFile(3): Name of file containing BeamDyn input parameters for blade 3 [-]
	AeroFile: Name of file containing aerodynamic input parameters [-]
	ServoFile: Name of file containing control and electrical-drive input parameters [-]
	HydroFile: Name of file containing hydrodynamic input parameters [-]
	SubFile: Name of file containing sub-structural input parameters [-]
	MooringFile: Name of file containing mooring system input parameters [-]
	IceFile: Name of file containing ice input parameters [-]

	Output
	SumPrint: Print summary data to “<RootName>.sum” [T/F]
	SttsTime: Amount of time between screen status messages [s]
	DT_Out: Time step for tabular output [s]
	TStart: Time to begin tabular output [s]
	OutFileFmt: Format for tabular output [1, 2, or 3]
	TabDelim: Use tab delimiters in text tabular output file? [T/F]
	OutFmt: Format used for text tabular output, excluding the time channel [-]

	Modeling Tips
	Limitations
	Future Work
	Converting to FAST v8.08.x
	Summary of Changes to Inputs
	Changes in FAST v8.08.00c-bjj
	Changes in FAST v8.03.02b-bjj

	Matlab Conversion Scripts
	Converting from FAST v8.03.02b-bjj
	Converting from FAST v7

	Compiling
	Running FAST v8.08.00c-bjj
	Feedback
	Appendix: Example FAST v8.08.* Input File

